

 ** ** **
 ** ** **
 ** ** **

 Atari Corporation

 MADMAC

 68000 MACRO ASSEMBLER

 REFERENCE MANUAL

 Beta Version 0.13

 Copyright 1986, 1987 Atari Corporation
 All Rights Reserved

 TABLE OF CONTENTS

 Introduction 4
 How to Tell Us About Bugs 4
 Getting Started 5

 The Command Line 6

 Using MADMAC 10
 Example Command Lines 10
 Interactive Mode 11
 Things You Should Be Aware Of 11
 Forward Branches 12
 Notes for AS68 users 12
 Notes for Mark Williams C Users 13
 Using MADMAC as a Back-End to Alcyon C. 14
 Text File Format 14

 Source Format 16
 Statements 16
 Equates . 16
 Symbols and Scope 17
 Keywords 18
 Constants 18
 Strings . 19
 Register Lists 20

 Directives 21

 Expressions 26
 Order of Evaluation 26
 Types . 26
 Unary Operators 27
 Binary Operators 28
 Example Expressions 28

 68000 Mnemonics 30

 Macros . 32
 Macro Declaration 32
 Parameter Substitution 32
 Macro Invocation 33
 Example Macros 34
 Repeat Blocks 36

 6502 Support 37
 Addressing Modes 37
 6502 Directives 37
 Object Code Format 38

 Error Messages 40

 mac/intro Introduction (4)

 INTRODUCTION

 This document describes MADMAC, a fast macro assembler for
 the 68000. MADMAC currently runs on the Atari ST and under
 4.2 BSD VAX UNIX. It was written at Atari Corporation by
 programmers who needed a high performance assembler for
 their work.

 MADMAC is intended to be used by programmers who write
 mostly in assembly language. It was not originally a back-
 end to a C compiler, therefore it has creature comforts that
 are usually neglected in such back-end assemblers. It sup-
 ports include files, macros, symbols with limited scope,
 some limited control structures, and other features. MADMAC
 is also blindingly fast, another feature often sadly and
 obviously missing in today's assemblers.

 MADMAC is not entirely compatible with the AS68 assembler
 provided with the original Atari ST Developer's Kit, but
 most changes are minor and a few minutes with an editor
 should allow you to assemble your current source files. If
 you are an AS68 user, before you leap into the unknown
 please read the section on "Notes for AS68 Users".

 This manual was originally typeset with TeX and the Computer
 Modern fonts, and printed on the Atari SLM-804 laser printer
 with a MEGA ST. This "nroff" version of the manual is a
 conversion of the original, much prettier manual. (The TeX
 version of the manual is not available electronically, but
 can be obtained from Atari Technical Support). Except for
 200 lines of assembly language, the assembler is written
 entirely in C.

 HOW TO TELL US ABOUT BUGS

 This is the beta release of the assembler, and it will
 definitely contain bugs, possibly even serious show-
 stoppers. As a beta test site, you are requested to report
 any bugs in the assembler and any problems with the documen-
 tation. We are also interested in your suggestions for
 improvements.

 Please send your bug reports and suggestions to:

 Landon Dyer (Attn: Madmac)
 Atari Corporation
 1196 Borregas Avenue
 Sunnyvale, CA 94088
 usenet: {sun,imagen,amdcad}!atari!dyer
 bix: ldyer

 8/12/87 Dyer MadMAC Reference Manual 0.13

 mac/intro Introduction (5)

 GETTING STARTED

 o If the dog hasn't already eaten your distribution disk,
 write protect the disk and make a backup of it now. Put
 the original disk in a safe place away from EMP, stray
 cosmic rays and Fido.

 o The distribution disk contains a file called README that
 you should read. This file contains important news about
 the contents of the distribution disk and summarizes the
 most recent changes to the tools.

 o Hard disk users can simply copy the executable files to
 their work or bin directories. People with floppy disks
 can copy the executables to ramdisks, install the assem-
 bler with the -q option, or even work right off of the
 floppies.

 o You will need an editor that can produce ``normal'' for-
 mat text files. Micro Emacs will work well, as will most
 other commercial program editors, but not most word pro-
 cessors (such as First Word or Microsoft Write).

 o You will probably want to examine or get a listing of the
 file ``ATARI.S''. It contains lots of definitions for
 the Atari ST, including BIOS variables, most BIOS, XBIOS
 and GEMDOS traps, and line-A equates. We (or you) could
 split the file up into pieces (a file for line-A equates,
 a file for hardware and BIOS variables and so on), but
 MADMAC is so fast that it doesn't matter much.

 o Read the rest of the manual, especially the first two
 chapters on ``The Command Line'' and ``Using MADMAC''.
 The distribution disk contains example programs that you
 can look at, assemble and modify.

 8/12/87 Dyer MadMAC Reference Manual 0.13

 mac/switches The Command Line (6)

 THE COMMAND LINE

 The assembler is called `mac' on UNIX systems, and `mac.prg'
 on the Atari ST. The command line takes the form:

 mac [switches] [files]

 A command line consists of any number of switches followed
 by the names of files to assemble. A switch is specified
 with a dash (-) followed immediately by a key character.
 Key characters are not case-sensitive, so `-d' is the same
 as `-D'. Some switches accept (or require) arguments to
 immediately follow the key character, with no spaces in
 between.

 Switch order is important. Command lines are processed from
 left to right in one pass, and switches usually take effect
 when they are encountered. In general it is best to specify
 all switches before the names of any input files.

 If the command line is entirely empty then MADMAC prints a
 copyright message and enters an `interactive' mode, prompt-
 ing for successive command lines with a star (*). An empty
 command line will exit (See the examples in the chapter on
 `Using MADMAC'). After each assembly in interactive mode,
 the assembler will print a summary of the amount of memory
 used, the amount of memory left, the number of lines pro-
 cessed, and the number of seconds the assembly took.

 Input files are assumed to have the extension `.s'; if a
 filename has no extension (i.e. no dot) then `.s' will be
 appended to it. More than one source filename may be speci-
 fied; the files are assembled into one object file, as if
 they were concatenated. On UNIX, if the input filename is
 `-', the standard input is used, and an object file called
 `noname.o' is produced.

 MADMAC normally produces object code in `file.o' if `file.s'
 is the first input filename. If the first input file is the
 standard input or a special character device, the output
 name is `noname.o'. The `-o' switch (see below) can be
 used change the output file name.

 8/12/87 Dyer MadMAC Reference Manual 0.13

 mac/switches The Command Line (7)

 SWITCHES

 -dname[=value]
 The `-d' switch permits symbols to be defined on the
 command line. The name of the symbol to be defined
 immediately follows the switch (no spaces). The symbol
 name may optionally be followed by an equals sign (=)
 and a decimal number. If no value is specified the
 symbol's value is zero. The symbol attributes are
 `defined, not referenced, and absolute'. This switch
 is most useful for enabling conditionally-assembled
 debugging code on the commandline; for example:

 -dDEBUG -dLoopCount=999 -dDebugLevel=55

 -e[file[.err]]
 The `-e' switch causes MADMAC to send error messages to
 a file, instead of the console. If a filename immedi-
 ately follows the switch character, error messages are
 written to the specified file. If no filename is
 specified, a file is created with the default extension
 `.err' and with the root name taken from the first
 input file name (e.g. error messages are written to
 `file.err' if `file' or `file.s' is the first input
 file name). If no errors are encountered, then no
 error listing file is created.

 -fm
 -fmu The `-fm' and `-fmu' switches cause MADMAC to generate
 Mark Williams style object files instead of Alcyon
 object files. These files may be linked with the Mark
 Williams linker. The `-fmu' switch causes underscores
 on the first character of a global symbol name to be
 moved to the end of the name, as per the Mark Williams
 C compiler naming convention. That is, `_main' will
 become `main_' and `__main' will become `_main_'.

 -ipathlist
 The `-i' switch allows automatic directory searching
 for include files. A list of semi-colon seperated
 directory search paths may be mentioned immediately
 following the switch (with no spaces anywhere). For
 example:

 -im:;c:include;c:include\sys

 will cause the assembler to search the current direc-
 tory of device `M' , and the directories `include' and
 `include\sys' on drive `C'. If `-i' is not specified,
 and the enviroment variable `MACPATH' exists, its value
 is used in the same manner. For example, users of the
 Mark Williams shell could put the following line in
 their profile script to achieve the same result as the

 8/12/87 Dyer MadMAC Reference Manual 0.13

 mac/switches The Command Line (8)

 `-i' example above:

 setenv MACPATH="m:;c:include;c:include\sys"

 -l[file[.prn]]
 The `-l' switch causes MADMAC to generate an assembly
 listing file. If a filename immediately follows the
 switch character, the listing is written to the speci-
 fied file. If no filename is specified, then a listing
 file is created with the default extension `.prn' and
 with the root name taken from the first input file name
 (e.g. the listing is written to `file.prn' if `file' or
 `file.s' is the first input file name).

 -ofile[.o]
 -o file[.o]
 The `-o' switch causes MADMAC to write object code on
 the specified file. No default extension is applied to
 the filename. For historical reasons the filename can
 also be seperated from the switch with a space (e.g.
 `-o file').

 -p
 -ps The `-p' and `-ps' switches cause MADMAC to produce an
 Atari ST executable file with the default extension of
 `.prg'. If there are any external references at the
 end of the assembly, an error message is emitted and no
 executable file is generated. The `-p' switch does not
 write symbols to the executable file. The `-ps' switch
 writes Alcyon-format symbols to the executable file.

 -q The `-q' switch is implemented only on the Atari ST,
 and is aimed primarily at users of floppy disk only
 systems. It causes MADMAC to install itself in memory,
 like a RAMdisk. Then the program m.prg (which is very
 short --- less than a sector) can be used instead of
 `mac.prg', which can take ten or twelve seconds to
 load.

 -s The `-s' switch causes MADMAC to generate a list of
 unoptimized forward branches in the form of warning
 statements. This is used to point out branches that
 could have been short.

 -u The -u switch takes effect at the end of the assembly.
 It forces all referenced and undefined symbols to be
 global, exactly as if they had been made global with a
 .extern or .globl directive. This can be used if you
 have a lot of external symbols, and you don't feel like
 declaring them all external.

 -v The `-v' switch turns on a `verbose' mode in which MAD-
 MAC prints out (for example) the names of the files it

 8/12/87 Dyer MadMAC Reference Manual 0.13

 mac/switches The Command Line (9)

 is currently visiting. Verbose mode is automatically
 entered when MADMAC prompts for input with a star.

 -yN The `-y' switch, followed immediately by a decimal
 number, sets the number of lines in a page. MADMAC
 will produce `N' lines before emitting a form-feed.
 If `N' is missing or less than 10 an error message is
 generated.

 -6 The '-6' switch takes effect when it is mentioned. It
 allows MADMAC to be used as a back end to the Alcyon C
 compiler. This switch is NOT a compatibility mode for
 AS68 --- it has been carefully tailored to accept the
 output of the Alcyon C compiler.

 Note: the assembler will produce code that is typically
 ten percent larger and ten percent slower than
 the output of the Alcyon assembler, therefore use
 of this switch for production code is
 discouraged.

 SUMMARY OF SWITCHES

 Switch Description
 -------------- --
 -dname[=value] Define symbol (with optional value).
 -e[file[.err]] Redirect error messages to a file.
 -fm, -fmu Generate Mark Williams style object files.
 -ipathlist Set include-file directory search path.
 -l[file[.prn]] Direct assembly listing to a file.
 -ofile[.o] Redirect object code to specified file.
 -p, -ps Generate executable (.PRG) file.
 -q Make MADMAC resident in memory (ST only).
 -s Warn about unoptimized long branches.
 -u Assume all undefined symbols are external.
 -v Verbose mode (silly running dialouge).
 -yN Set listing page size to N lines.
 -6 `Back end' mode for Alcyon C68.

 8/12/87 Dyer MadMAC Reference Manual 0.13

 mac/using Using MadMAC (10)

 USING MADMAC

 Let's assemble and link some example programs. These pro-
 grams are included on the distribution disk in the `EXAM-
 PLES' directory --- you should copy them to your work area
 before you try the examples out.

 If you have been reading carefully, you know that MADMAC can
 generate an executable file without linking. This is useful
 for making small, standalone programs that don't require
 externals or library routines. For example, the following
 two commands (the shell prompts with a percent (%) here):

 % mac example.s
 % aln -s example.o

 could be replaced by the single command:

 % mac -ps example.s

 since you don't need the linker for stand-alone object
 files.

 Successive source files named in the command line are are
 concatenated, as in this example, which assembles three
 files into a single executable, as if they were one big
 file:

 % mac -p bugs shift images

 Of course you can get the same effect by using the
 `.include' directive, but sometimes it is convenient to do
 the concatenation from the command line.

 Here we have an unbelievably complex command line:

 mac -lzorf -y95 -o tmp -ehack -im: -Ddebug=123 -ps example

 This monster produces a listing on the file called `
 zorf.prn' with 95 lines per page, writes the executable code
 (with symbols) to a file called `tmp.prg', writes an error
 listing to the file `hack.err', specifies an include-file
 path that includes the current directory on the drive `M:',
 defines the symbol `debug' to have the value 123, and assem-
 bles the file `example.s'.

 One last thing. If there are any assembly errors, MADMAC
 will terminate with an exit code of 1. If the assembly
 succeeds (no errors, although there may be warnings) the
 exit code will be 0. This is primarily for use with `make'
 utilities.

 8/12/87 Dyer MadMAC Reference Manual 0.13

 mac/using Using MadMAC (11)

 INTERACTIVE MODE

 If you invoke MADMAC with an empty command line it will
 print a copyright message and prompt for more commands with
 a star (*). This is useful if you are used to working
 directly from the desktop, or if you want to assemble
 several files in succession without having to reload the
 assembler from disk for each assembly.

 In interactive mode, the assembler is also in verbose mode
 (just as if you had specified `-v' on each command line):

 % mac

 MADMAC Atari Macro Assembler
 Copyright 1987 Atari Corporation
 Beta version X.XX Zzz YYYY lmd

 * -ps example
 [Including: example.s]
 [Including: atari.s]
 [Leaving: atari.s]
 [Leaving: example.s]
 [Writing executable file: example.prg]
 36K used, 3658K left, 850 lines, 2.0 seconds
 *

 You can see that the assembler gave a `blow-by-blow' account
 of the files it processed, as well as a summary of the
 assembly's memory usage, the number of lines processed
 (including macro and repeat-block expansion), and how long
 the assembly took.

 The assembler prompts for another command with the star. At
 this point you can either type a new command line for the
 assembler to process, or you can exit by typing control-C or
 an empty line.

 THINGS YOU SHOULD BE AWARE OF

 MADMAC is a `one pass' assembler. This means that it gets
 all of its work done by reading each source file exactly
 once and then `back-patching' to fix up forward references.
 This one-pass nature is usually transparent to the program-
 mer, with the following important exceptions:

 o In listings, the object code for forward references is
 not shown. Instead, lower-case `xx's are displayed for
 each undefined byte, as in the following example:

 8/12/87 Dyer MadMAC Reference Manual 0.13

 mac/using Using MadMAC (12)

 60xx .1: bra.s .2 ; forward branch
 xxxxxxxx dc.l .2 ; forward reference
 60FE .2: bra.s .2 ; backward reference

 o Forward branches (including BSR instructions) are never
 optimized to their short forms. To get a short forward
 branch it is necessary to explicitly use the `.s' suffix
 in the source code.

 o Error messages may appear at the end of the assembly,
 refering to earlier source lines that contained undefined
 symbols. That is, error messages are not necessarily in
 order by line number.

 o All object code generated must fit in memory. Running
 out of memory is a fatal error that you must deal with by
 splitting up your source files, re-sizing or eliminating
 memory-using programs such as ramdisks and desk acces-
 sories, or buying more RAM. (If you are completely out
 of space then you should seriously consider buying a
 Cray.)

 FORWARD BRANCHES

 MADMAC does not optimize forward branches for you, but it
 will tell you about them if you use the `-s' (short branch)
 switch:

 % mac -s example.s
 "example.s", line 20: warning: unoptimized short branch

 With the `-e' switch you can redirect the error output to a
 file, and determine by hand (or with editor macros) which
 forward branches are safe to explicitly declare short.

 NOTES FOR AS68 USERS

 MADMAC is not entirely compatible with the Alcyon assembler,
 AS68. This section outlines the major differences. In
 practice, we have found that very few changes are necessary
 to make AS68 source code assemble.

 o A semicolon (;) must be used to introduce a comment,
 except that a star (*) may be used in the first column.
 AS68 treated anything following the operand field, pre-
 ceeded by whitespace, as a comment. (MADMAC treats a
 star that is not in column 1 as a multiplication opera-
 tor).

 8/12/87 Dyer MadMAC Reference Manual 0.13

 mac/using Using MadMAC (13)

 o Labels require colons (even labels that begin in column
 1).

 o Conditional assembly directives are called `if', `else'
 and `endif'. AS68 called these `ifne', `ifeq' (etc.),
 and `endc'.

 o The tilde (~) character is an operator, and back-quote
 (`) is an illegal character. AS68 permitted the tilde
 and back-quote characters in symbols.

 o There are no equivalents to AS68's `org' or `section'
 directives. AS68's `page' directive has become `eject'.
 The AS68 `.xdef' and `.xref' directives are not imple-
 mented, but `.globl' makes these unnecessary anyway. The
 directives `.comline', `mask2', `idnt' and `opt', which
 were unimplemented and ignored in AS68, are not legal in
 MADMAC.

 o The location counter cannot be manipulated with a state-
 ment of the form:

 * = expression

 o The `ds' directive is not permitted in the text or data
 segments (except in `-6' mode); an error message is
 issued. Use `dcb' instead to reserve large blocks of
 initialized storage.

 o Back-slashes in strings are `electric' characters that
 are used to escape C-like character codes. Watch out for
 GEMDOS path names in ASCII constants --- you will have to
 convert them to double-backslashes.

 NOTES FOR MARK WILLIAMS C USERS

 MADMAC will generate object code that the Mark Williams C
 linker, `ld', will accept. This has been tested only with
 version 2.0 of the Mark Williams package. Some notable
 differences between MADMAC and the Mark Williams assembler,
 `as', are:

 o MWC permits 16-character symbol names in the object file,
 and MADMAC supports this;

 o MWC object files can contain more code and data sections
 than the MADMAC (Alcyon) object code format. MADMAC maps
 its code sections as follows:

 8/12/87 Dyer MadMAC Reference Manual 0.13

 mac/using Using MadMAC (14)

 MWC Space MADMAC Space
 --------- ------------
 shri text
 prvi unsupported
 bssi unsupported
 shrd data
 prvd unsupported
 bssd bss
 debug unsupported
 symbols symbols
 absolute abs, equates, etc.

 o It is not possible for MADMAC to generate code in the
 Mark Williams private instruction, private data or unini-
 tialized instruction spaces.

 o None of the Mark Williams assembler directives (e.g.
 `.long' and `.odd') are supported. None of the MWC non-
 standard addressing modes are supported.

 o The Mark Williams debugger, `db', does not grok the
 Alcyon-format symbols produced with the `-ps' switch; it
 complains about the format of the executable file and
 aborts. But you can use SID or the Atari debugger.

 o MADMAC does not comprehend the method by which the Mark
 Williams shell passes long command lines to programs.
 Command lines are silently truncated to 127 characters.

 USING MADMAC AS A BACK-END TO THE ALCYON C COMPILER

 MADMAC can be used in place of the AS68 assembler as a
 back-end for the Alcyon version 4.14 C compiler. The `-6'
 switch turns on a mode that warps and perverts MADMAC's
 ordinary syntax into accepting what the Alcyon compiler
 dishes out. This can be used in a batch file (for instance)
 with a line that looks like:

 mac -6 -o %1.o m:%1

 (Assuming that device `M:' is where the source was put by
 compiler phase `c168'). You should be aware that AS68 gen-
 erally produces better and faster code than MADMAC, although
 it is slower to assemble.

 TEXT FILE FORMAT

 For those using editors other than the `Emacs' style ones
 (Micro-Emacs, Mince, etc.) this section documents the source
 file format that MADMAC expects.

 8/12/87 Dyer MadMAC Reference Manual 0.13

 mac/using Using MadMAC (15)

 o Files must contain characters with ASCII values less than
 128; it is not permissable to have characters with their
 high bits set unless those characters are contained in
 strings (i.e. between single or double quotes) or in com-
 ments.

 o Lines of text are terminated with carriage-return/line-
 feed, linefeed alone, or carriage-return alone.

 o The file is assumed to end with the last terminated line.
 If there is text beyond the last line terminator (e.g.
 control-Z) it is ignored.

 8/12/87 Dyer MadMAC Reference Manual 0.13

 mac/source Source Format (16)

 STATEMENTS

 A statement may contain up to four fields which are identi-
 fied by order of appearance and terminating characters. The
 general form of an assembler statement is:

 label: operator operand(s) ; comment

 The label and comment fields are optional. An operand field
 may not appear without an operator field. Operands are
 seperated with commas. Blank lines are legal. If the first
 character on a line is an asterisk (*) or semicolon (;) then
 the entire line is a comment. A semicolon anywhere on the
 line (except in a string) begins a comment field which
 extends to the end of the line.

 The label, if it appears, must be terminated with a single
 or double colon. If it is terminated with a double colon it
 is automatically declared global. It is illegal to declare
 a confined symbol global (see: `Symbols and Scope').

 EQUATES

 A statement may also take one of these special forms:

 symbol equ expression
 symbol = expression
 symbol == expression
 symbol set expression
 symbol reg register list

 The first two forms are identical; they equate the symbol to
 the value of an expression, which must be defined (no for-
 ward references). The third form, double-equals (==), is
 just like an equate except that it also makes the symbol
 global. (As with labels, it is illegal to make a confined
 equate global.) The fourth form allows a symbol to be set to
 a value any number of times, like a variable. The last form
 equates the symbol to a 16-bit register mask specified by a
 register list. It is possible to equate confined symbols
 (see: `Symbols and Scope'). For example:

 cr equ 13 ; carriage-return
 lf = 10 ; line-feed
 DEBUG == 1 ; global debug flag
 count set 0 ; variable
 count set count + 1 ; increment variable
 .regs reg d3-d7/a3-a6 ; register list
 .cr = 13 ; confined equate

 8/12/87 Dyer MadMAC Reference Manual 0.13

 mac/source Source Format (17)

 SYMBOLS AND SCOPE

 Symbols may start with an uppercase or lowercase letter (A-Z
 a-z), an underscore (_), a question mark (?) or a period
 (.). Each remaining character may be an upper or lowercase
 letter, a digit (0-9), an underscore, a dollar sign ($), or
 a question mark. (Periods can only begin a symbol, they
 cannot appear as a symbol continuation character). Symbols
 are terminated with a character that is not a symbol con-
 tinuation character (e.g. a period or comma, whitespace,
 etc.). Case is significant for user-defined symbols, but
 not for 68000 mnemonics, assembler directives and register
 names. Symbols are limited to 100 characters. When symbols
 are written to the object file they are silently truncated
 to eight (or sixteen) characters --- depending on the object
 file format --- with no check for (or warnings about) colli-
 sions.

 For example, all of the following symbols are legal and
 unique:

 reallyLongSymbolName .reallyLongConfinedSymbolName
 a10 ret move dc frog aa6 a9 ????
 .a1 .ret .move .dc .frog .a9 .9 .????
 .0 .00 .000 .1 .11 .111 . ._
 _frog ?zippo? sys$system atari Atari ATARI aTaRi

 while all of the following symbols are illegal:

 12days dc.10 dc.z 'quote .right.here
 @work hi.there $money$ ~tilde

 Symbols beginning with a period (.) are confined; their
 scope is between two normal labels. Confined symbols may be
 labels or equates. It is illegal to make a confined symbol
 global (with the `.globl' directive, a double colon, or a
 double equals). Only unconfined labels delimit a confined
 symbol's scope; equates (of any kind) do not count. For
 example, all symbols are unique and have unique values in
 the following:

 zero:: subq.w #1,d1
 bmi.s .ret
 .loop: clr.w (a0)+
 dbra d0,.loop
 .ret: rts
 FF:: subq.w #1,d1
 bmi.s .99
 FOO = *
 .loop: move.w #-1,(a0)+
 dbra d0,.loop
 .99: rts

 8/12/87 Dyer MadMAC Reference Manual 0.13

 mac/source Source Format (18)

 Confined symbols are useful since the programmer has to be
 much less inventive about finding small, unique names that
 also have meaning.

 It is legal to define symbols that have the same names as
 processor mnemonics (such as `move' or `rts') or assembler
 directives (such as `.even'). Indeed, one should be careful
 to avoid typographical errors, such as this classic (in 6502
 mode):

 .6502
 .org = $8000

 which equates a confined symbol to a hexadecimal value,
 rather than setting the location counter, which the `.org'
 directive is responsible for.

 KEYWORDS

 The following names, in all combinations of uppercase and
 lowercase, are keywords and may not be used as symbols (e.g.
 labels, equates, or the names of macros):

 equ set reg sr ccr pc sp ssp usp
 d0 d1 d2 d3 d4 d5 d6 d7 a0 a1 a2 a3 a4 a5 a6 a7
 r0 r1 r2 r3 r4 r5 r6 r7 r8 r9 r10 r11 r12 r13 r14 r15

 CONSTANTS

 Numbers may be decimal, hexadecimal, octal, binary or con-
 catenated ASCII. The default radix is decimal, and it may
 not be changed. Decimal numbers are specified with a string
 of digits (0-9). Hexadecimal numbers are specified with a
 leading dollar sign ($) followed by a string of digits and
 uppercase or lowercase letters (A-F a-f). Octal numbers are
 specified with a leading at-sign (@) followed by a string of
 octal digits (0-7). Binary numbers are specified with a
 leading percent sign (%) followed by a string of binary
 digits (0-1). Concatenated ASCII constants are specified by
 enclosing one or more characters in single or double quotes.
 For example:

 1234 decimal
 $1234 hexadecimal
 @777 octal
 %10111 binary
 "z" ASCII
 'frog' ASCII

 Negative numbers are specified with a unary minus (-). For

 8/12/87 Dyer MadMAC Reference Manual 0.13

 mac/source Source Format (19)

 example:

 -5678 -@334 -$4e71
 -%11011 -'z' -"WIND"

 STRINGS

 Strings are contained between double (") or single (') quote
 marks. Strings may contain non-printable characters by
 specifying `backslash' escapes, similar to the ones used in
 the C programming language. MADMAC will generate a warning
 if a backslash is followed by a character not appearing
 below:

 Code Value Meaning
 ---- ----- --------------------
 \ $5c backslash
 $0a line-feed (newline)
 $08 backspace
 $˚$0˚09˚d t˚ca˚ab˚rriage-return
 $0c form-feed
 \ $1b escape
 ' $27 single-quote

 It is possible for strings (but NOT symbols) to contain
 characters with their high bits set (i.e. character codes
 $80..$FF).

 You should be aware that backslash characters are popular in
 GEMDOS path names, and that you may have to escape backslash
 characters in your existing source code. For example, to
 get the file "\c:\auto\ahdi.s" you would specify the string
 "c:\\auto\\ahdi.s".

 REGISTER LISTS

 Register lists are special forms used with the MOVEM
 mnemonic and the `reg' directive. They are 16-bit values,
 with bits 0 through 15 corresponding to registers D0 through
 A7. A register list consists of a series of register names
 or register ranges seperated by slashes. A register range
 consists of two register names, Rn and Rm, n < m, seperated
 by a dash. For example:

 8/12/87 Dyer MadMAC Reference Manual 0.13

 mac/source Source Format (20)

 Register List Value
 ------------- -----
 d0-d7/a0-a7 $FFFF
 d2-d7/a0/a3-a5 $39FC
 d0/d1/a0-a3/d7/a6-a7 $CF83
 d0 $0001
 r0-r15 $FFFF

 Register lists and register equates may be used in conjunc-
 tion with the MOVEM mnemonic. The key is to specify the
 register list constant with a `#' sign (otherwise the regis-
 ter list is treated like an ordinary absolute value, i.e. an
 address). For example:

 temps reg d0-d2/a0-a2 ; temp registers
 keeps reg d3-d7/d3-a6 ; registers to preserve
 allregs reg d0-d7/a0-a7 ; all registers

 movem.l #temps,-(sp) ; these two lines ...
 movem.l d0-d2/a0-a2,-(sp) ; ... are identical
 movem.l #keeps,-(sp) ; save "keep" registers
 movem.l (sp)+,#keeps ; restore "keep" registers

 8/12/87 Dyer MadMAC Reference Manual 0.13

 mac/direct Directives (21)

 DIRECTIVES

 Assembler directives may be any mix of upper or lowercase.
 The leading periods are optional, though they are shown here
 and their use is encouraged. Directives may be preceeded by
 a label; the label is defined before the directive is exe-
 cuted. Some directives accept size suffixes (`.b', `.s',
 `.w' or `.l'); the default is word (`.w') if no size is
 specified. The `.s' suffix is identical to `.b'. Direc-
 tives relating to the 6502 are described in the chapter on
 `6502 Support'.

 .even
 If the location counter for the current section is odd,
 make it even by adding one to it. In text and data
 sections a zero byte is deposited.

 .assert expression [, expression ...]
 Assert that the conditions are true (non-zero). If any
 of the comma-seperated expressions evaluates to zero an
 assembler warning is issued. For example:

 .assert *-start = $76
 .assert stacksize >= $400

 .bss
 .data
 .text
 Switch to the BSS, data or text segments. Instructions
 and data may not be assembled into the BSS segment, but
 symbols may be defined and storage may be reserved with
 the `.ds' directive. Each assembly starts out in the
 text segment.

 .abs [location]
 Start an absolute section, beginning with the specified
 location (or zero, if no location is specified). An
 absolute section is much like BSS, except that loca-
 tions (labels) are absolute, not relative to the base
 of BSS. This directive is useful for declaring struc-
 tures or hardware locations with the `ds' directive.

 For example, the following equates:

 VPLANES = 0
 VWRAP = 2
 CONTRL = 4
 INTIN = 8
 PTSIN = 12

 could be as easily (and more readably) defined as:

 8/12/87 Dyer MadMAC Reference Manual 0.13

 mac/direct Directives (22)

 .ABS
 VPLANES: ds.w 1
 VWRAP: ds.w 1
 CONTRL: ds.l 1
 INTIN: ds.l 1
 PTSIN: ds.l 1

 .comm symbol, expression
 Specifies a label and the size of a common region. The
 label is made global, thus confined symbols cannot be
 made common. The linker groups all common regions of
 the same name; the largest size determines the real
 size of the common region.

 .dc.b expression [, expression ...]
 .dc.w expression [, expression ...]
 .dc.l expression [, expression ...]
 Deposit initialized storage in the current section. If
 the specified size is word or long, the assembler will
 execute a `.even' before depositing data. If the size
 is `.b', then strings that are not part of arithmetic
 expressions (e.g. strings along) are deposited byte-
 by-byte. If no size is specified, the default is `.w'.
 This directive cannot be used in the BSS section.

 .dcb.b expression1, expression2
 .dcb.w expression1, expression2
 .dcb.l expression1, expression2
 Generate an initialized block of `expression1' bytes,
 words or longwords of the value `expression2'. If the
 specified size is word or long, the assembler will exe-
 cute `.even' before generating data. If no size is
 specified, the default is `.w'. This directive cannot
 be used in the BSS section.

 .ds.b expression
 .ds.w expression
 .ds.l expression
 Reserve space in the current segment for the appropri-
 ate number of bytes, words or longwords. If no size is
 specified, the default size is `.w'. If the size is
 word or long, the assembler will execute `.even' before
 reserving space. This directive can only be used in
 the BSS or ABS sections (in text or data, use `.dcb' to
 reserve large chunks of initialized storage.)

 .init.b [#expression] expression[.size] [, ...]
 .init.w [#expression] expression[.size] [, ...]
 .init.l [#expression] expression[.size] [, ...]
 Generalized initialization directive. The size speci-
 fied on the directive becomes the default size for the
 rest of the line. (The `default' default size is

 8/12/87 Dyer MadMAC Reference Manual 0.13

 mac/direct Directives (23)

 `.w'.) A comma-seperated list of expressions follows
 the directive; an expression may be followed by a size
 to override the default size. An expression may be
 preceeded by a # (sharp) sign, an expression and a
 comma, which specifies a repeat count to be applied to
 the next expression. For example:

 .init.l -1, 0.w, #16,'z'.b, #3,0, 11.b

 will deposit a longword of -1, a word of zero, sixteen
 bytes of lower-case `z', three longwords of zero, and a
 byte of 11.

 No auto-alignment is performed within the line, but a
 `.even' is done once (before the first value is depo-
 sited) if the default size is word or long.

 This directive is particularly useful for initializing
 structures that contain mixtures of bytes, words, long-
 words and strings.

 .cargs [#expression,] symbol[.size] [, symbol[.size] ...]
 Compute stack offsets to C (and other language) argu-
 ments. Each symbol is assigned an absolute value
 (effectively an equate) which starts at `expression'
 and increases by the size of each symbol, for each sym-
 bol. If the `expression' is not supplied, the default
 starting value is 4. For example:

 .cargs #8, .fileName.l, .openMode, .bufPointer.l

 could be used to declare offsets from A6 to a pointer
 to a filename, a word containing an open mode, and a
 pointer to a buffer. (Note that the symbols used here
 are confined). Another example, a C-style `string-
 length' function, could be written as:

 strlen:: .cargs .string ; declare arg
 move.l .string(sp),a0 ; a0 -> string
 moveq #-1,d0 ; initial size = -1
 .1: addq.l 1,d0 ; bump size
 tst.b (a0)+ ; at end of string?
 bne .1 ; (no -- try again)
 rts ; return string length

 .end
 End the assembly. In an include file, end the include
 file and resume assembling the superior file. This
 statement is not required, nor are warning messages
 generated if it is missing at the end of a file. This
 directive may be used inside conditional assembly, mac-
 ros or repeat blocks.

 8/12/87 Dyer MadMAC Reference Manual 0.13

 mac/direct Directives (24)

 .if expression
 .else
 .endif
 Start a block of conditional assembly. If the expres-
 sion is true (non-zero) then assemble the statements
 between the `.if' and the matching `.endif' or `.else'.
 If the expression is false, ignore the statements
 unless a matching `.else' is encountered. Conditional
 assembly may be nested to any depth.

 It is possible to exit a conditional assembly block
 early from within an include file (with `.end') or a
 macro (with `.endm').

 .iif expression, statement
 Immediate version of `.if'. If the expression is true
 (non-zero) then the statement, which may be an instruc-
 tion, a directive or a macro (or even another `.iif'),
 is executed. If the expression is false, the statement
 is ignored. No `.endif' is required. For example:

 .iif age < 18, canDrive = 0
 .iif weight > 500, dangerFlag = 1
 .iif !(^^defined DEBUG), .include dbsrc

 .macro name [formal, formal ...]
 .endm
 .exitm
 Define a macro called `name' with the specified formal
 arguments. The macro definition is terminated with a
 `.endm' statement. A macro may be exited early with
 the `.exitm' directive. See the chapter on `Macros'
 for more information.

 .undefmac macroName [, macroName ...]
 Remove the macro-definition for the specified macro
 names. If reference is made to a macro that is not
 defined, no error message is printed and the name is
 ignored.

 .rept expression
 .endr
 The statements between the `.rept' and `.endr' direc-
 tives will be repeated `expression' times. If the
 expression is zero or negative, no statements will be
 assembled. No label may appear on a line containing
 either of these directives.

 .globl symbol [, symbol ...]
 .extern symbol [, symbol ...]
 Each symbol is made global. None of the symbols may be
 confined symbols (those starting with a period). If

 8/12/87 Dyer MadMAC Reference Manual 0.13

 mac/direct Directives (25)

 the symbol is defined in the assembly, the symbol is
 exported in the object file. If the symbol is unde-
 fined at the end of the assembly, and it was referenced
 (i.e. used in an expression), then the symbol value is
 imported as an external reference that must be resolved
 by the linker. The `.extern' directive is merely a
 synonym for `.globl'.

 Note: Symbols are silently truncated to 8 or 16 charac-
 ters when they are written to the object file.

 .include "file"
 Include a file. If the filename is not enclosed in
 quotes, then a default extension of `.s' is applied to
 it. If the filename is quoted, then the name is not
 changed in any way.

 Note: If the filename is not a valid symbol, then the
 assembler will generate an error message. You
 should enclose filenames such as `atari.s' in
 quotes, because such names are not symbols (note
 the `.' in the filename).

 If the include file cannot be found in the current
 directory, then the directory search path, as specified
 by -d on the command line, or by the `MACPATH'
 enviroment string, is traversed.

 .eject
 Issue a page eject in the listing file.

 .title "string"
 .subttl [-] "string"
 Set the title or subtitle on the listing page. The
 title should be specified on the the first line of the
 source program in order to take effect on the first
 page. The second and subsequent uses of `.title' will
 cause page ejects. The second and subsequent uses of
 `.subttl' will cause page ejects unless the subtitle
 string is preceeded by a dash (-).

 .list
 .nlist
 Enable or disable source code listing. These direc-
 tives increment and decrement an internal counter, so
 they may be appropriately nested. They have no effect
 if the `-l' switch is not specified on the command
 line.

 8/12/87 Dyer MadMAC Reference Manual 0.13

 mac/expr Expressions (26)

 EXPRESSIONS

 All values are computed with 32-bit 2's complement
 arithmetic. For boolean operations (such as `if' or
 `assert') zero is considered false, and non-zero is
 considered true.

 Note: EXPRESSIONS ARE EVALUATED STRICTLY LEFT-TO-RIGHT,
 WITH NO REGARD FOR OPERATOR PRECEDENCE.

 Thus the expression `1+2*3' evaluates to 9, not 7.
 However, precedence may be forced with parenthesis (())
 or square-brackets ([]).

 TYPES

 Expressions belong to one of three classes: undefined,
 absolute or relocatable. An expression is undefined if
 it involves an undefined symbol (e.g. an undeclared
 symbol, or a forward reference). An expression is
 absolute if its value will not change if the program
 were to be relocated (for instance, the number 0, all
 labels declared in an `abs' section, and all Atari ST
 hardware register locations are absolute values). An
 expression is relocatable if it involves exactly one
 symbol that is contained in a text, data or BSS sec-
 tion.

 Only absolute values may be used with operators other
 than addition (+) or subtraction (-) --- it is illegal,
 for instance, to multiply or divide by a relocatable or
 undefined value. Subtracting a relocatable value from
 another relocatable value in the same section results
 in an absolute value (the distance between them, posi-
 tive or negative). Adding (or subtracting) an absolute
 value to or from a relocatable value yeilds a relocat-
 able value (an offset from the relocatable address).

 It is important to realize that relocatable values
 belong to the sections they are defined in (e.g. text,
 data or BSS), and it is not permissible to mix and
 match sections. For example, in this code:

 line1: dc.l line2, line1+8
 line2: dc.l line1, line2-8
 line3: dc.l line2-line1, 8
 error: dc.l line1+line2, line2 >> 1, line3/4

 Line 1 deposits two longwords that point to line 2.
 Line 2 deposits two longwords that point to line 1.
 Line 3 deposits two longwords that have the absolute
 value eight. The fourth line will result in an

 8/12/87 Dyer MadMAC Reference Manual 0.13

 mac/expr Expressions (27)

 assembly error, since the expressions (respectively)
 attempt to add two relocatable values, shift a relocat-
 able value right by one, and divide a relocatable value
 by four.

 The pseudo-symbol `*' (star) has the value that the
 current section's location counter had at the beginning
 of the current source line. For example, these two
 statements deposit three pointers to the label `bar':

 foo: dc.l *+4
 bar: dc.l *,*

 Similarly, the pseudo-symbol `$' has the value that the
 current section's location counter has, and it is kept
 up to date as the assembler deposits information
 `across' a line of source code. For example, these two
 statements deposit four pointers to the label `zop':

 zip: dc.l $+8, $+4
 zop: dc.l $, $-4

 UNARY OPERATORS

 - Unary minus (2's complement).
 ! Logical (boolean) NOT.
 ~ Tilde: bitwise NOT (1's complement).

 ^^defined <symbol> True if symbol defined.
 ^^reference <symbol> True if symbol referenced
 ^^streq string,string True if strings are equal.
 ^^macdef <macroname> True if macro is defined.

 The boolean operators generate the value `0' if the
 expression is true, and `1' if it is not.

 A symbol is referenced if it is involved in an expres-
 sion. A symbol may have any combination of attributes:
 undefined and unreferenced, defined and unreferenced
 (declared but never used), undefined and referenced (in
 the case of a forward or external reference), or
 defined and referenced.

 BINARY OPERATORS

 8/12/87 Dyer MadMAC Reference Manual 0.13

 mac/expr Expressions (28)

 + - * / The usual arithmetic operators.
 % Modulo
 & | ^ AND, OR and Exclusive-OR.
 << >> Bit-wise shift left and shift right.
 < <= >= > Boolean magnitude comparisons.
 = Boolean equality.
 <> != Boolean inequality.

 All binary operators have the same precedence: expres-
 sions are evaluated strictly left to right.

 o Division or modulo by zero yields an assembly error.

 o The `<>' and `!=' operators are synonyms.

 o Note that the modulo operator (%) is also used to
 introduce binary constants (see: `Constants'). A
 percent sign should be followed by at least one
 space if it is meant to be a modulo operator, and is
 followed by a `0' or ``1''.

 SPECIAL FORMS

 ^^date The current system date (Gemdos format).
 ^^time The current system time (Gemdos format).

 The `date' special form expands to the current system
 date, in Gemdos format. The format is a 16-bit word
 with bits 0..4 indicating the day of the month (1..31),
 bits 5..8 indicating the month (1..12), and bits 9..15
 indicating the year since 1980, in the range 0..119.

 The `time' special form expands to the current system
 time, in Gemdos format. The format is a 16-bit word
 with bits 0..4 indicating the current second divided by
 2, bits 5..10 indicating the current minute (0..59),
 and bits 11.15 indicating the current hour (0..23).

 EXAMPLE EXPRESSIONS

 line address contents source code
 ---- ------- -------- --------------------
 1 00000000 4480 lab1: neg.l d0
 2 00000002 427900000000 lab2: clr.w lab1
 3 =00000064 equ1 = 100
 4 =00000096 equ2 = equ1 + 50

 5 00000008 00000064 dc.l lab1 + equ1
 6 0000000C 7FFFFFE6 dc.l (equ1 + ~equ2) >> 1
 7 00000010 0001 dc.w ^^defined equ1
 8 00000012 0000 dc.w ^^referenced lab2

 8/12/87 Dyer MadMAC Reference Manual 0.13

 mac/expr Expressions (29)

 9 00000014 00000002 dc.l lab2
 10 00000018 0001 dc.w ^^referenced lab2
 11 0000001A 0001 dc.w lab1 = (lab2 - 6)

 Lines 1 through four here are used to set up the rest
 of the example. Line 5 deposits a relocatable pointer
 to the location 100 bytes beyond the label `lab1'.
 Line 6 is a nonsensical expression that uses the `~'
 and right-shift operators. Line 7 deposits a word of 1
 because the symbol `equ1' is defined (in line 3).

 Line 8 deposits a word of 0 because the symbol `lab2',
 defined in line 2, has not been referenced. But the
 expression in line 9 references the symbol `lab2', so
 line 10 (which is a copy of line 8) deposits a word of
 1. Finally, line 11 deposits a word of 1 because the
 boolean equality operator evaluates to true.

 The operators `^^defined' and `^^referenced' are par-
 ticularly useful in conditional assembly. For
 instance, it is possible to automatically include
 debugging code if the debugging code is referenced, as
 in:

 lea string,a0 ; A0 -> message
 jsr debug ; print a message
 rts ; and return
 string: dc.b "Help me, Spock!",0

 .iif ^^defined debug, .include "debug.s"

 The JSR statement references the symbol `debug'. Near
 the end of the source file, the `.iif' statement
 includes the file `debug.s' if the symbol `debug' was
 referenced. In production code, presumably all refer-
 ences to the debug symbol will be removed, and the
 debug source file will not be included. (We could have
 as easily made the symbol `debug' external, instead of
 including another source file).

 8/12/87 Dyer MadMAC Reference Manual 0.13

 mac/assembly 68000 Mnemonics (30)

 68000 MNEMONICS

 All of the standard Motorola 68000 mnemonics and
 addressing modes are supported; you should refer to
 Motorola's `68000 PROGRAMMER'S REFERENCE MANUAL' for a
 description of the instruction set and the allowable
 addressing modes for each instruction. With one major
 exception (forward branches) the assembler performs all
 the reasonable optimizations of instructions to their
 short or address register forms.

 Register names may be in upper or lower case. The
 alternate forms `R0' through `R15' may be used to
 specify `D0' through `A7'. All register names are key-
 words, and may not be used as labels or symbols. None
 of the 68010 or 68020 register names are keywords (but
 they may become keywords in the future).

 ADDRESSING MODES

 Syntax Description
 ----------- ------------------------------
 Dn Data register direct
 An Address register direct
 (An) Address register indirect
 (An)+ Address register postincrement
 -(An) Address register predecrement
 disp(An) Indirect with displacement
 bdisp(An,Xi) Indirect indexed
 abs.W Absolute, forced short
 abs Short or long absolute
 abs.L Absolute, forced long
 disp(PC) Program counter relative
 disp(PC, Xi) Program counter indexed
 #immed Immediate

 BRANCHES

 Since MADMAC is a one pass assembler, forward branches
 cannot be automatically optimized to their short form.
 Instead, unsized forward branches are assumed to be
 long. Backward branches are always optimized to the
 short form if possible.

 A table that lists `extra' branch mnemonics (common
 synonyms for the Motorola defined mnemonics) appears
 below.

 8/12/87 Dyer MadMAC Reference Manual 0.13

 mac/assembly 68000 Mnemonics (31)

 BRANCH SYNONYMS
 Synonym: Is really:
 --------- ----------
 bhs bcc
 blo bcs
 bze, bz beq
 bnz bne
 dblo dbcs
 dbze dbeq
 dbra dbf
 dbhs dbhi
 dbnz dbne

 LINKER CONSTRAINTS

 It is not possible to make an external reference that
 will fix up a byte. For example:

 .extern frog
 move.l frog(pc,d0),d1

 is illegal (and generates an assembly error) when
 frog is external, because the displacement occupies a
 byte field in the 68000 offset word, which the object
 file cannot represent.

 OPTIMIZATIONS AND TRANSLATIONS

 The assembler provides `creature comforts' when it
 processes 68000 mnemonics:

 o "CLR.x An" will really generate "SUB.x An,An".

 o ADD, SUB and CMP with an address register will
 really generate ADDA, SUBA and CMPA.

 o The ADD, AND, CMP, EOR, OR and SUB mnemonics with
 immediate first operands will generate the `I' forms
 of their instructions (ADDI, etc.) if the second
 operand is NOT register direct.

 o All shift instructions with only one operand assume
 a count of one.

 o MOVE.L is optimized to MOVEQ if the immediate
 operand is defined and in the range -128..127. How-
 ever, ADD and SUB are never translated to their
 quick forms; ADDQ and SUBQ must be explicit.

 8/12/87 Dyer MadMAC Reference Manual 0.13

 mac/macro Macros (32)

 MACROS

 A macro definition is a series of statements of the
 form:

 .macro name [formal-arg, ...]
 :
 : statements making up the macro body
 :
 .endm

 The name of the macro may be any valid symbol that is
 not also a 68000 instruction or an assembler directive.
 (The name may begin with a period, but macros cannot be
 made confined the way labels or equated symbols can
 be). The formal argument list is optional; it is
 specified with a comma-seperated list of valid symbol
 names. Note that there is no comma between the name of
 the macro and the name of the first formal argument

 A macro body begins on the line after the `.macro'
 directive. All instructions and directives, except
 other macro definitions, are legal inside the body.

 The macro ends with the `.endm' statement. If a label
 appears on the line with this directive, the label is
 ignored and a warning is generated.

 PARAMETER SUBSTITUTION

 Within the body, formal parameters may be expanded with
 the special forms:

 \name
 \{name}

 The second form (enclosed in braces) can be used in
 situations where the characters following the formal
 parameter name are valid symbol continuation charac-
 ters. This is usually used to force concatentation, as
 in:

 \{frog}star
 \{godzilla}vs\{reagan}

 The formal parameter name is terminated with a charac-
 ter that is not valid in a symbol (e.g. whitespace or
 punctuation); optionally, the name may be enclosed in
 curly-braces. The names must be symbols appearing on
 the formal argument list, or a single decimal digit (\1
 corresponds to the first argument, \2 to the second, \9
 to the ninth, and \0 to the tenth). It is possible for

 8/12/87 Dyer MadMAC Reference Manual 0.13

 mac/macro Macros (33)

 a macro to have more than ten formal arguments, but
 arguments 11 and on must be referenced by name, not by
 number.

 Other special forms are:

 Form Description
 ----- ---
 \\ Replaced by single `\'
 \~ a unique symbol of the form "Mn"
 \# the number of arguments actually specified
 \! the `dot-size' used on the macro invocation
 \?name conditional expansion
 \?{name} conditional expansion

 The last two forms are identical: if the argument is
 specified and is non-empty, the form expands to a `1',
 otherwise (if the argument is missing or empty) the
 form expands to a `0'.

 The form `\!' expands to the `dot-size' that was speci-
 fied when the macro was invoked. This can be used to
 write macros that behave differently depending on the
 size suffix they are given, as in this macro which pro-
 vides a synonym for the `dc' directive:

 .macro deposit value
 dc\! value
 .endm
 deposit.b 1 ; byte of 1
 deposit.w 2 ; word of 2
 deposit.l 3 ; longword of 3

 MACRO INVOCATION

 A previously-defined macro is called when its name
 appears in the operation field of a statement. Argu-
 ments may be specified following the macro name; each
 argument is seperated by a comma. Arguments may be
 empty. Arguments are stored for substitution in the
 macro body in the following manner:

 o Numbers are converted to hexadecimal (they also
 acquire a leading `$').

 o All spaces outside strings are removed.

 o Keywords (such as register names, dot sizes and `^^'
 operators) are converted to lowercase.

 o Strings are enclosed in double-quote marks (").

 8/12/87 Dyer MadMAC Reference Manual 0.13

 mac/macro Macros (34)

 For example, a hypothetical call to the macro
 `mymacro', of the form:

 mymacro A0, , 'Zorch' / 32, ^^DEFINED foo, , , tick tock

 will result in the translations:

 Arg# Expansion Comment
 ---- ----------- -----------------------------------
 1 a0 "A0" converted to lowercase
 2 empty
 3 "Zorch"/$20 "Zorch" in double quotes, 32 in hex
 4 ^^defined foo "^^DEFINED" in lowercase
 5 empty
 6 empty
 7 ticktock spaces removed (concatenation)

 The `.exitm' directive will cause an immediate exit
 from a macro body. Thus the macro definition:

 .macro foo source
 .iif !\?source, .exitm ; exit if source is empty
 move source,d0 ; otherwise, deposit source
 .endm

 will not generate the move instruction if the argument
 `source' is missing from the macro invocation.

 The `.end', `.endif' and `.exitm' directives all pop-
 out of their include levels appropriately. That is, if
 a macro performs a `.include' to include a source file,
 an executed `.exitm' directive within the include-file
 will pop out of both the include-file and the macro.

 Macros may be recursive or mutually recursive to any
 level, subject only to the availability of memory.
 When writing recursive macros, take care in the coding
 of the termination condition(s). A macro that repeat-
 edly calls itself will cause the assembler to exhaust
 its memory and abort the assembly.

 EXAMPLE MACROS

 The `Gemdos' macro is used to make file system calls.
 It has two parameters, a function number and the number
 of bytes to clean off the stack after the call. The
 macro pushes the function number onto the stack and
 does the trap to the file system. After the trap
 returns, conditional assembly is used to choose an ADDQ
 or an ADD.W to remove the arguments that were pushed.

 8/12/87 Dyer MadMAC Reference Manual 0.13

 mac/macro Macros (35)

 .macro Gemdos trpno, clean
 move.w #\trpno,-(sp) ; push trap number
 trap !1 ; do GEMDOS trap
 .if \clean <= 8 ;
 addq #\clean,sp ; clean-up up to 8 bytes
 .else ;
 add.w #\clean,sp ; clean-up more than 8 bytes
 .endif ;
 .endm

 The `Fopen' macro is supplied two arguments; the
 address of a filename, and the open mode. Note that
 plain MOVE instructions are used, and that the caller
 of the macro must supply an appropriate addressing mode
 (e.g. immediate) for each argument.

 .macro Fopen file, mode
 move.w #\mode,-(sp) ; push open mode
 move.l #\file,-(sp) ; push address of file name
 Gemdos $3d,8 ; do the GEMDOS call
 .endm

 The `String' macro is used to allocate storage for a
 string, and to place the string's address somewhere.
 The first argument should be a string or other expres-
 sion acceptable in a `dc.b' directive. The second
 argument is optional; it specifies where the address of
 the string should be placed. If the second argument is
 omitted, the string's address is pushed onto the stack.
 The string data itself is kept in the data segment.

 .macro String str,loc
 .if \?loc ; if loc is defined
 move.l #.\~,\loc ; put string's address there
 .else ; otherwise
 pea #.\~ ; push the string's address
 .endif ;
 .data ; put the string data
 .\~: dc.b r,0 ; in the data segment
 .text ; switch back to TEXT
 .endm

 The construction `.\~' will expand to a label of the
 form `.Mn' (where `n' is a unique number for every
 macro invocation), which is used to tag the location of
 the string. The label should be confined because the
 macro may be used along with other confined symbols.

 Unique symbol generation plays an important part in the
 art of writing fine macros. For instance, if we needed
 three unique symbols, we might write `.\~a' `.\~b' and

 8/12/87 Dyer MadMAC Reference Manual 0.13

 mac/macro Macros (36)

 `.\~c'.

 REPEAT BLOCKS

 Repeat-blocks provide a simple iteration capability. A
 repeat block allows a range of statements to be
 repeated a specified number of times. For instance, to
 generate a table consisting of the numbers 255 through
 0 (counting backwards) you could write:

 .count set 255 ; initialize counter
 .rept 256 ; repeat 256 times:
 dc.b .count ; deposit counter
 .count set .count - 1 ; and decrement it
 .endr ; (end of repeat block)

 Repeat blocks can also be used to duplicate identical
 pieces of code (which are common in bitmap-graphics
 routines). For example:

 .rept 16 ; clear 16 words
 clr.w (a0)+ ; starting at A0
 .endr ;

 8/12/87 Dyer MadMAC Reference Manual 0.13

 mac/6502 6502 Mode (37)

 6502 SUPPORT

 MADMAC will generate code for the 6502 microprocessor.
 This chapter describes extra addressing modes and
 directives used to support the 6502.

 As the 6502 object code is not linkable (currently
 there is no linker) external references may not be
 made. Nevertheless, MADMAC may reasonably be used for
 large assemblies because of its performance.

 All standard 6502 addressing modes are supported, with
 the exception of the accumulator addressing form, which
 must be omitted (e.g. `ROR A' must be written as
 `ROR'). Five extra modes, synonyms for existing ones,
 are included for compatibility with the Atari Coinop
 assembler (MAC65).

 ADDRESSING MODES

 Syntax Description
 ----------- ------------------------------------
 empty implied or accumulator (tsx, ror...)
 expr absolute or zero-page
 #expr immediate
 (expr,X) indirect X
 (expr),Y indirect Y
 (expr) indirect
 expr,X indexed X
 expr,Y indexed Y

 @expr(X) indirect X, same as "(expr,X)"
 @expr(Y) indirect Y, same as "(expr),Y"
 @expr indirect, same as "(expr)"
 X,expr indexed X, same as "expr,X"
 Y,expr indexed X, same as "expr,Y"

 While MADMAC lacks `high' and `low' operators, high
 bytes of words may be extracted with the shift (>>) or
 divide (/) operators, and low bytes may be extracted
 with the bitwise AND (&) operator.

 DIRECTIVES

 .6502
 This directive enters the 6502 section. The loca-
 tion counter is undefined, and must be set with
 `.org' before any code can be generated.

 The `dc.w' directive will produce 6502-format
 words (low byte first). The 68000's reserved key-
 words (D0-D7/A0-A7/SSP/USP and so on) remain

 8/12/87 Dyer MadMAC Reference Manual 0.13

 mac/6502 6502 Mode (38)

 reserved (and thus unusable) while in the 6502
 section. The directives GLOBL, DC.L, DCB.L, TEXT
 DATA, BSS, ABS, EVEN and COMM are illegal in the
 6502 section. It is permitted, though probably
 not useful, to generate both 6502 and 68000 code
 in the same object file.

 .68000
 This directive leaves the 6502 segment and returns
 to the 68000's text segment. 68000 instructions
 may be assembled as normal.

 .org location
 This directive is only legal in the 6502 section.
 It sets the value of the location counter to loca-
 tion an expression that must be defined, absolute,
 and less than $10000 .

 WARNING
 It is possible to assemble `beyond' the
 microprocessor's 64K address space, but
 attempting to do so will probably screw the
 assembler. DO NOT attempt to generate code
 like this:

 .org $fffe
 nop ; $FFFE
 nop ; $FFFF
 nop ; $10000 (boom!)

 as the third NOP in this example, at location
 $10000, may cause the assembler to crash or
 exhibit spectacular schizophrenia. In any
 case, MADMAC will give no warning before flak-
 ing out.

 OBJECT CODE FORMAT

 This is a little bit of a kludge. An object file con-
 sists of a page map, followed by one or more page
 images, followed by a normal Alcyon 68000 object file.
 If the page map is all zero, it is not written.

 The page map contains a byte for each of the 256 256-
 byte pages in the 6502's 64K address space. The byte
 is zero ($00) if the page contained only zero bytes, or
 one ($01) if the page contained any non-zero bytes. If
 a page is flagged with a one, then it is written (in
 order) following the page map.

 The following code:

 8/12/87 Dyer MadMAC Reference Manual 0.13

 mac/6502 6502 Mode (39)

 .6502
 .org $8000
 .dc.b 1
 .org $8100
 .dc.b 1
 .org $8300
 .dc.b 1
 .end

 will generate a page map that looks (to a programmer)
 something like:

 <$80 bytes of zero>
 $01 $01 $00 $01
 <$7c more bytes of zero, for $100 total>

 <image of page $80>
 <image of page $81>
 <image of page $83>

 Following the last page image is an Alcyon-format
 object file, starting with the magic number $601A. It
 may contain 68000 code (although that is probably use-
 less), but the symbol table is valid and available for
 debugging purposes. 6502 symbols will be absolute (not
 in text, data or bss).

 8/12/87 Dyer MadMAC Reference Manual 0.13

 mac/errors Error Messages (40)

 ERROR MESSAGES

 Most of MADMAC's error messages are self-explanatory.
 They fall into four classes: warnings about situations
 that you (or the assembler) may not be happy about,
 errors that cause the assembler to not generate object
 files, fatal errors that cause the assembler to abort
 immediately, and internal errors that should never hap-
 pen. If you come across an internal error, we would
 appreciate it if you would contact Atari Technical Sup-
 port and let us know about the problem.

 You can write editor macros (or sed or awk scripts) to
 parse the error messages MADMAC generates. When a mes-
 sage is printed, it is of the form:

 "filename", line <line-number>: message

 The first element, a filename enclosed in double
 quotes, indicates the file that generated the error.
 The filename is followed by a comma, the word `line',
 and a line number, and finally a colon and the text of
 the message. The filename "(*top*)" indicates that the
 assembler could not determine which file had the prob-
 lem. On UNIX, the filename "(stdin)" indicates the
 standard input file.

 The following sections list warnings, errors and fatal
 errors in alphabetical order, along with a short
 description of what may have caused the problem.

 WARNINGS

 bad backslash code in string
 You tried to follow a backslash in a string with a
 character that the assembler didn't recognize.
 Remember that MADMAC uses a C-style escape system
 in strings.

 label ignored
 You specified a label before a `macro', `rept' or
 `endm' directive. The assembler is warning you
 that the label will not be defined in the assem-
 bly.

 unoptimized short branch
 This warning is only generated if the `-s' switch
 is specified on the commandline. The message
 refers to a forward, unsized long branch that you
 could have made short (.s).

 8/12/87 Dyer MadMAC Reference Manual 0.13

 mac/errors Error Messages (41)

 FATAL ERRORS

 cannot continue
 As a result of previous errors, the assembler can-
 not continue processing. The assembly is aborted.

 line too long as a result of macro expansion
 When a source line within a macro was expanded,
 the resultant line was too long for MADMAC (longer
 than 200 characters or so).

 memory exhausted
 The assembler ran out of memory. You should (1)
 split up your source files and assemble them
 seperately, or (2) if you have any ramdisks or
 RAM-resident programs (like desk accessories)
 decrease their size so that the assembler has more
 RAM to work with. As a rule of thumb, pure 68000
 code will use up to twice the number of bytes con-
 tained in the source files, whereas 6502 code will
 use 64K of ram right away, plus the size of the
 source files. The assembler itself uses about 80K
 bytes. Get out your calculator...

 too many ENDMs
 The assembler ran across an endm directive when
 it wasn't expecting to see one. The assembly is
 aborted. Check the nesting of your macro defini-
 tions --- you probably have an extra `endm'.

 ERRORS

 .cargs syntax
 Syntax error in `.cargs' directive.

 .comm symbol already defined
 You tried to `.comm' a symbol that was already
 defined.

 .ds permitted only in BSS
 You tried to use `.ds' in the text or data sec-
 tion.

 .init not permitted in BSS or ABS
 You tried to use `.init' in the BSS or ABS sec-
 tion.

 .org permitted only in .6502 section
 You tried to use `.org' in a 68000 section.

 Cannot create: <filename>
 The assembler could not create the indicated

 8/12/87 Dyer MadMAC Reference Manual 0.13

 mac/errors Error Messages (42)

 filename.

 External quick reference
 You tried to make the immediate operand of a
 MOVEQ, SUBQ or ADDQ instruction external.

 PC-relative expr across sections
 You tried to make a PC-relative reference to a
 location contained in another section.

 [bwsl] must follow `.' in symbol
 You tried to follow a dot in a symbol name with
 something other than one of the four characters
 `B', `W', `S' or `L'.

 addressing mode syntax
 You made a syntax error in an addressing mode.

 assert failure
 One of your `.assert' directives failed!

 bad (section) expression
 You tried to mix and match sections in an expres-
 sion.

 bad 6502 addressing mode
 The 6502 mnemonic will not work with the address-
 ing mode you specified.

 bad expression
 There's a syntax error in the expression you
 typed.

 bad size specified
 You tried to use an inappropriate size suffix for
 the instruction. Check your 68000 manual for
 allowable sizes.

 bad size suffix
 You can't use `.b' (byte) mode with the MOVEM
 instruction.

 cannot .globl local symbol
 You tried to make a confined symbol global or com-
 mon.

 cannot initialize non-storage (BSS) section
 You tried to generate instructions (or data, with
 `dc') in the BSS or ABS section.

 cannot use '.b' with an address register
 You tried to use a byte-size suffix with an
 address register. The 68000 does not perform

 8/12/87 Dyer MadMAC Reference Manual 0.13

 mac/errors Error Messages (43)

 byte-sized address register operations.

 directive illegal in .6502 section
 You tried to use a 68000-oriented directive in the
 6502 section.

 divide by zero
 The expression you typed involves a division by
 zero.

 expression out of range
 The expression you typed is out of range for its
 application.

 external byte reference
 You tried to make a byte-sized reference to an
 external symbol, which the object file format will
 not allow.

 external short branch
 You tried to make a short branch to an external
 symbol, which the linker cannot handle.

 extra (unexpected) text found after addressing mode
 MADMAC thought it was done processing a line, but
 it ran up against `extra' stuff. Check for dan-
 gling commas, etc.

 forward or undefined .assert
 The expression you typed after a `.assert' direc-
 tive had an undefined value. Remember that MADMAC
 is one-pass.

 hit EOF without finding matching .endif
 The assembler fell off the end of last input file
 without finding a `.endif' to match an `.if'.
 You probably forgot an `.endif' somewhere.

 illegal 6502 addressing mode
 The 6502 instruction you typed doesn't work with
 the addressing mode you specified.

 illegal absolute expression
 You can't use an absolute-valued expression here.

 illegal bra.s with zero offset
 You can't do a short branch to the very next
 instruction (read your 68000 manual).

 illegal byte-sized relative reference
 The object file format does not permit bytes con-
 tain relocatable values; you tried to use a byte-
 sized relocatable expression in an immediate

 8/12/87 Dyer MadMAC Reference Manual 0.13

 mac/errors Error Messages (44)

 addressing mode.

 illegal character
 Your source file contains a character that MADMAC
 doesn't like (most control characters fall into
 this category).

 illegal initialization of section
 You tried to use `.dc' or `.dcb' in the BSS or ABS
 sections.

 illegal relative address
 The relative address you specified is illegal
 because it belongs to a different section.

 illegal word relocatable (in .PRG mode)
 You can't have anything other than long relocat-
 able values when you're generating a `.PRG' file.

 inappropriate addressing mode
 The mnemonic you typed doesn't work with the
 addressing modes you specified. Check your 68000
 manual for allowable combinations.

 invalid addressing mode
 The combination of addressing modes you picked for
 the movem instruction are not implemented by the
 68000. Check your 68000 reference manual for
 details.

 invalid symbol following ^^
 What followed the `^^' wasn't a valid symbol at
 all.

 mis-nested .endr
 The assembler found a .endr directive when it
 wasn't prepared to find one. Check your repeat-
 block nesting.

 mismatched .else
 The assembler found a `.else' directive when it
 wasn't prepared to find one. Check your condi-
 tional assembly nesting.

 mismatched .endif
 The assembler found a `.endif' directive when it
 wasn't prepared to find one. Check your condi-
 tional assembly nesting.

 missing '='
 missing '}'
 missing argument name
 missing close parenthesis ')'

 8/12/87 Dyer MadMAC Reference Manual 0.13

 mac/errors Error Messages (45)

 missing close parenthesis ']'
 missing comma
 missing filename
 missing string
 missing symbol
 missing symbol or string
 The assembler expected to see a
 symbol/filename/string (etc), but found something
 else instead. In most cases the problem should be
 obvious.

 misuse of `.', not allowed in symbols
 You tried to use a dot (.) in the middle of a sym-
 bol name.

 mod (%) by zero
 The expression you typed involves a modulo by
 zero.

 multiple formal argument definition
 The list of formal parameter names you supplied
 for a macro definition includes two identical
 names.

 multiple macro definition
 You tried to define a macro which already had a
 definition.

 non-absolute byte reference
 You tried to make a byte reference to a relocat-
 able value, which the object file format does not
 allow.

 non-absolute byte value
 You tried to `dc.b' or `dcb.b' a relocatable
 value. Byte relocatable values are not permitted
 by the object file format.

 register list order
 You tried to specify a register list like D7-D0,
 which is illegal. Remember that the first regis-
 ter number must be less than or equal to the
 second register number.

 register list syntax
 You made an error in specifying a register list
 for a `.REG' directive or a `.MOVEM' instruction.

 symbol list syntax
 You probably forgot a comma between the names of
 two symbols in a symbol list, or you left a comma
 dangling on the end of the line.

 8/12/87 Dyer MadMAC Reference Manual 0.13

 mac/errors Error Messages (46)

 syntax error
 This is a `catch-all' error.

 undefined expression
 The expression has an undefined value because of a
 forward reference, or an undefined or external
 symbol.

 unimplemented addressing mode
 You tried to use 68020 `square-bracket' notation
 for a 68020 addressing mode. MADMAC does not sup-
 port 68020 addressing modes.

 unimplemented directive
 You have found a directive that didn't appear in
 the documentation. It doesn't work.

 unimplemented mnemonic
 You've found an assembler (or documentation) bug.

 unknown symbol following ^^
 You followed a `^^' with a name the assembler
 didn't recognize.

 unsupported 68020 addressing mode
 The assembler saw a 68020-type addressing mode.
 MADMAC does not assemble code for the 68020 or
 68010.

 unterminated string
 You specified a string starting with a single or
 double quote, but forgot to type the closing
 quote.

 write error
 The assembler had a problem writing an object
 file. This is usually caused by a full disk, or a
 bad sector on the media.

 8/12/87 Dyer MadMAC Reference Manual 0.13

